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Abstract

This paper presents solutions for several 2-D aerodynamic problems with geometrically unspecified boundaries.

These solutions are obtained with an enhanced Lagrangian method based on stream function and Lagrangian-distance

coordinates, which includes special procedures to substantially improve the numerical resolution of the shock waves

and for the numerical implementation of the aerodynamic conditions defining the geometrically unspecified solid or

fluid boundaries. The method is first validated for flows with specified solid boundaries by comparison with exact

analytical solutions and with previous computational results obtained by numerical methods using Eulerian

formulations. In all cases, this enhanced Lagrangian method displayed a very good accuracy and computational

efficiency and a sharp numerical resolution of shock waves. Then this method is used to obtain solutions for problems

with geometrically unspecified boundaries, such as: (i) indirect problems of determining the geometrical shape of airfoils

and nozzle walls for a specified pressure distribution; (ii) supersonic nozzle design problem for a specified uniform flow

at the nozzle outlet based on reflection-suppression condition; (iii) analysis of flexible-membrane airfoils; and (iv)

analysis of jet-flapped airfoils.

r 2003 Published by Elsevier Science Ltd.

1. Introduction

The computational methods based on Eulerian representation of the fluid flow, in fixed geometrical coordinates, have

been successfully utilized to solve the flow problems past bodies of specified geometrical shapes. However, there are

numerous problems of engineering interest in which some of the boundaries of the fluid flow are a priori geometrically

unspecified. In these cases, the geometrical shape of these solid or fluid boundaries depends in a certain manner on the

flow itself. These types of flow problems are included in the fluid–structure interaction problems.

Examples of such flow problems with geometrically unspecified boundaries are: (i) the indirect flow problems,

consisting in the determination of the geometrical shape of an airfoil or wing to generate a specified pressure

distribution for a given upstream flow; (ii) analysis of flows past adaptive structures, such as flexible-membrane airfoils

or wings, for which the geometrical shape depends on the pressure generated by the fluid flow (or flows past elastic

structures subjected to deformations generated by the aerodynamic forces); (iii) design flow problems, in which the

geometrical shape of certain solid surfaces in contact with the fluid flow has to be determined to satisfy certain

aerodynamic conditions, such as the nozzle design based on the reflection-suppression condition aiming to obtain a

specified uniform flow at the nozzle outlet; and (iv) the flow problems with fluid interfaces, such as free surfaces or slip

lines, with their geometrical shapes depending on the flow itself; the flows past jet-flapped airfoils or wings, in which the

geometrical shape of the thin jet-sheet wake depends on the flow, represent examples for this type of problems.
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The utilization of the Eulerian flow representation in numerical methods based on fixed grids for such problems with

geometrically unspecified boundaries may lead, in most cases, to long iterative procedures eventually requiring

computations on successive body shapes until the final geometry is reached.

For this type of problems, the Lagrangian or semi-Lagrangian formulations using streamline coordinates are more

suitable, since the geometrically unspecified boundaries are always represented by streamlines. In addition, the

Lagrangian formulations may eliminate the need for lengthy grid generation procedures, usually required by the

numerical method using Eulerian formulations.

Thus, the Lagrangian formulation based on stream function and Lagrangian-time coordinates, such as that

developed by Loh and Hui (1991), eliminates the need for lengthy grid generation procedures. For supersonic flows, this

formulation efficiently obtains the solution of the Euler equations by integrating them in Lagrangian time along the

streamlines. However, this formulation based on Lagrangian time has discontinuous fluxes across the slip lines and,

mathematically, leads to a system of equations which is not fully hyperbolic, being characterized by only five

independent eigenvectors, although it has six real eigenvalues (Hui and Zhao, 1993; Yang and Hsu, 1993). These

deficiencies can be eliminated by replacing the Lagrangian time with the Lagrangian distance along the streamlines, as

shown by Hui and Zhao (1993) and Yang and Hsu (1993). Many studies using Lagrangian formulations have been

recently developed by, among others, Loh and Hui (1993), Loh and Liou (1993, 1994), Liou (1995), Strain (1999, 2001),

Van Roessel and Hui (1989) and Yang et al. (1993).

In this paper, the generalized Lagrangian formulation based on stream function and Lagrangian distance coordinates

is used to obtain solutions for a series of aerodynamic problems involving solid or fluid boundaries of unspecified

geometry. In this formulation, the mathematical problem is closed by two compatibility equations associated with the

Lagrangian coordinate transformation, which are added to the system of Euler equations of motion, as shown by Loh

and Hui (1991), Hui and Zhao (1993), Mateescu and Nasrallah (1995) and Mateescu and Chocron (1996). This

augmented system of differential equations is easier to be solved (although it contains two more compatibility

equations, which are however simple) since in the Lagrangian coordinates the continuity and energy equations reduce

to constants along the streamlines. The numerical strategy consists in the integration in Lagrangian distance (along

streamlines) of the augmented system of equations, based on a finite volume discretization, in which the flux values are

determined for supersonic flows by using the Riemann problem solution with a Godunov-type scheme, in a similar way

as those used by Loh and Hui (1991), Glatz and Wardlaw (1984) and Mateescu and Nasrallah (1995). This Lagrangian

method is enhanced by a special procedure developed to substantially improve the numerical resolution of the shock

waves, and by special numerical procedures developed for the numerical implementation of the aerodynamic conditions

defining the solid or fluid boundaries of unspecified geometry.

The method is first validated for aerodynamic problems with solid boundaries of specified geometry by comparison

with exact analytical solutions and with previous computational results obtained by numerical methods using Eulerian

formulations. Then this enhanced Lagrangian method is used to determine the solution of several 2-D flow problems

with geometrically unspecified boundaries: (i) Determination of the geometrical shape of an airfoil or of a portion of a

nozzle wall corresponding to a specified pressure distribution (these are indirect flow problems). (ii) Supersonic nozzle

design problem for obtaining a specified uniform flow at the nozzle outlet based on the reflection-suppression condition

(design flow problem). (iii) Analysis of supersonic flows past flexible-membrane airfoils (an adaptive-structure type of

flow problem). (iv) Analysis of supersonic flows past jet-flapped airfoils (an adaptive fluid boundary problem with slip

lines).

In the solution of all these problems this enhanced Lagrangian method displayed an excellent computational

efficiency and led to accurate solutions with a sharp numerical resolution of the shock waves and a rigorous treatment

of the expansion fans. This method did not require a lengthy grid generation procedure, and was capable of solving very

efficiently the flow problems with geometrically unspecified solid or fluid boundaries.

2. Generalized Lagrangian formulation

In the Eulerian representation of the fluid flows, any specific fluid dynamic property, pðr; tÞ; of a fluid particle is a

function of time, t; and of its location with respect to a fixed point at that instant of time, represented by the position

vector r ¼ ix þ jy þ kz: In this Eulerian representation, the differential Euler equations of motion governing the steady

compressible inviscid (but rotational) flows can be expressed in two-dimensional conservation form as

@f=@x þ @g=@y ¼ 0; f ¼ ½ru; ru2 þ p; ruv; rH�T; ð1aÞ

g ¼ ½rv; ruv; rv2 þ p; rH�T; ð1bÞ
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where H is the specific enthalpy

H ¼ ðu2 þ v2Þ=2þ ðgp=rÞ=ðgþ 1Þ; ð2Þ

in which r is the fluid density, p is the pressure, u and v are the components of the fluid velocity, V ¼ iu þ jv; along the
Cartesian coordinates x and y; and g is the specific heat ratio. The Eulerian representation of the fluid flow has been

used on various specified fixed grids to solve mainly flow problems with specified solid boundaries. (for example

Anderson et al., 1986; Mateescu, 1990; Mateescu and Venditti, 2001; Roe, 1986).

In the classical Lagrangian representation of the fluid flow, the fluid particles are identified by their location r0 ¼
ix0 þ jy0 þ kz0 at a certain time t0 (called initial time), and any fluid dynamic property at an instant of time t is related

to that initial position of the specific fluid particle, that is pðr0; tÞ: Obviously, this Lagrangian representation implies

tracking the motion of a very large number of fluid particles, which would be a very difficult task.

2.1. Lagrangian-time formulation

A more convenient Lagrangian formulation (Loh and Hui, 1991) uses the streamlines and the Lagrangian time, t
(along the streamlines), to identify the fluid particles in their motion. In this Lagrangian formulation, any fluid dynamic

property is a function of the value of the stream function x (defining the particular streamline) and the Lagrangian time,
that is pðx; tÞ: The velocity components are the partial derivatives of the coordinates with respect to the Lagrangian

time, u ¼ @x=@t and v ¼ @y=@t: The physical coordinates x and y can thus be expressed in function of the Lagrangian

time and stream function as

dx ¼ u dtþU dx; dy ¼ v dtþV dx; ð3Þ

where the derivatives U ¼ @x=@x and V ¼ @y=@x of the coordinate transformation have to satisfy the compatibility

conditions (since dx and dy are total exact differentials): @U=@t ¼ @u=@x and @V=@t ¼ @v=@x:
For two-dimensional compressible flows, the stream function can be defined in differential form as

dx ¼ rðu dy � v dxÞ=K ; ð4Þ

where K is an a priori constant corresponding to the specific streamline.

In the Lagrangian coordinates t and x; the Euler equations of motion Eq. (1) can be expressed, together with the

compatibility relations, in the matrix form

@E=@tþ @F=@x ¼ 0; ð5aÞ

E ¼ K ;H ;Ku þ pV;Kv � pU;U;V½ �T; ð5bÞ

F ¼ 0; 0;�pv; pu;�u;�v½ �T; ð5cÞ

where the specific enthalpy H is defined by (2), and the aforementioned constant K has the expression

K ¼ rðuV� vUÞ: ð6Þ

One can notice that the continuity and energy equations, represented by the first two lines of equations (5), are

extremely simple and reduce practically to a constant along the streamline. Similarly, the compatibility equations of the

coordinate transformation, represented by the last two lines of Eqs. (5), are also very simple. Hence, the system of

differential Eqs. (5) is easier to integrate, although it has two more equations than system (1) in the Eulerian

formulation. In addition, the Lagrangian formulation is more suitable to solve the flow problems involving boundaries

of unspecified geometry, such as the free surfaces, as it will be discussed further. However, this formulation using the

Lagrangian time has a deficiency related to the fact that the flux vector F presents a discontinuity across the fluid

interfaces, such as the slip lines, since the tangential velocity component (and hence u and/or v) has different values on

the two sides of a slip line. Also, system (5) is not fully hyperbolic, being characterized by only five independent

eigenvectors, although it has six real eigenvalues (Hui and Zhao, 1993; Yang and Hsu, 1993).

2.2. Generalized Lagrangian formulation

A generalized Lagrangian formulation based on the stream function, x; and the Lagrangian-distance, l; along the

streamlines overcomes the above-mentioned deficiencies (Hui and Zhao, 1993; Yang and Hsu, 1993; Mateescu and

Nasrallah, 1995). The Lagrangian distance in this formulation is related to the Lagrangian time by dl ¼ V dt; where
V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
is the magnitude of the fluid velocity. In this case, the coordinate transformation from the physical plane
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to the Lagrangian coordinates becomes

dx ¼ cos y dlþU dx; dy ¼ sin y dlþV dx; ð7Þ

where y ¼ tan�1ðv=uÞ is the inclination angle of the fluid velocity, V ; with respect to the x-axis, and where the

derivatives U ¼ @x=@x and V ¼ @y=@x of the coordinate transformation have to satisfy the following compatibility

relations:

@U=@l ¼ @ðcos yÞ=@x; @V=@l ¼ @ðsin yÞ=@x: ð8Þ

The stream function is defined by the same Eq. (4), where K is defined by Eq. (6).

In this Lagrangian formulation, the Euler equations of motion (1) can be expressed, together with the compatibility

relations (8), in the matrix form

@E

@l
þ

@F

@x
¼ 0; E ¼

e1

e2

e3

e4

e5

e6

2
6666666664

3
7777777775
¼

K

H

Ku þ pV

Kv � pU

U

V

2
6666666664

3
7777777775
; F ¼

f1

f2

f3

f4

f5

f6

2
6666666664

3
7777777775
¼

0

0

�p sin y

p cos y

�cos y

�sin y

2
6666666664

3
7777777775
; ð9Þ

where the specific enthalpy H is defined by Eq. (2). The first two equations in Eq. (9) represent the continuity and

energy conservation equations, the next two equations are the projections of the momentum conservation equation on

the two axes, and the last two represent the compatibility relations (8) of the coordinate transformation. Each of the

first two equations are reduced to a constant along the streamlines, and the last two are again very simple equations.

Thus, this system of equations is simpler to integrate than the corresponding system (1) in the Eulerian formulation.

In addition, the free surfaces, such as the slip lines, can be easier treated in this generalized Lagrangian formulation

since they are represented by streamlines. Moreover, the flux vector F does not present any discontinuity across the slip

lines, by contrast to the flux F in the formulation using the Lagrangian time (5) and to the flux g in the Eulerian

formulation (1), which both contain the velocity components that are discontinuous across the slip lines.

As a result, this generalized Lagrangian formulation is more suitable for the analysis of flow problems with

geometrically unspecified boundaries, which are always streamlines.

3. Numerical method based on Lagrangian formulation

In this Lagrangian formulation, the aerodynamic problems are solved in a computational domain using a rectangular

grid aligned with the Lagrangian coordinates l and x; where the lines x ¼ xj ¼ constant represent streamlines, in which

subscript j (defining the corresponding streamline) varies from 1 to Nj along the height of the computational domain.

Consider a rectangular cell situated along the streamline x ¼ xj and delimited by the streamlines x ¼ xj�1=2 ¼
xj � Dxj=2 and x ¼ xjþ1=2 ¼ xj þ Dxj=2; and by the constant Lagrangian-distance lines l ¼ ln and l ¼ lnþ1 ¼ ln þ Dln;
where Dln and Dxj define the width and the height of the cell.

The system of equations (9) can be discretized for this cell in the form

Enþ1
j ¼ En

j � ðDln=DxjÞðF
nþ1=2
jþ1=2 � F

nþ1=2
j�1=2 Þ; ð10Þ

where F
nþ1=2
jþ1=2 and F

nþ1=2
j�1=2 are the flux values at the cell interfaces aligned to the streamlines. Hence, the numerical strategy

adopted here is to integrate the vector E along l; from l ¼ l1 (or n ¼ 1) to l ¼ lN (or n ¼ N). In fact, the first two

components of this vector, K and H; remain constant during this integration, that is K ¼ Kj and H ¼ Hj for the streamline

j: For the other components, one needs to calculate first the values of the pressure and the flow velocity inclination, p and y;
at the cell interfaces, since they appear in the flux vector values F

nþ1=2
jþ1=2 and F

nþ1=2
j�1=2 at these streamline interfaces.

3.1. Flux calculation based on Riemann problem solution

The flux values at the cell interfaces are calculated for supersonic flows using a procedure based on the solution of

Riemann problem, similar to that used in the Godunov method (Loh and Hui, 1991; Glatz and Wardlaw, 1984;

Mateescu and Nasrallah, 1995). In this sense, at l ¼ ln each cell interface along x ¼ constant; such as that along the

streamline x ¼ xj�1=2; is considered to represent a membrane separating two cells of compressible fluid at different

states, such as [rn
j ; u

n
j ; v

n
j ; p

n
j ] and [rn

j�1; u
n
j�1; v

n
j�1; p

n
j�1]. This separating membrane is assumed to suddenly disappear for
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l > ln and, as a result, an oblique shock wave and an expansion fan will propagate from the interface into the two

neighboring cells, j � 1 and j: If pn
j > pn

j�1; an oblique shock wave will propagate from the interface into the lower cell

j � 1; and, at the same time, an expansion fan will propagate into the upper cell j; as shown in Fig. 1 (or vice versa if

pn
j opn

j�1).

Denote by yn
j�1; Mn

j�1 and yn
j ; Mn

j the flow inclination angle and the Mach number in the two cells at l ¼ ln; where

Mn
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðun

j Þ
2 þ ðvn

j Þ
2�=ðgp=rÞ

q
; in which

ffiffiffiffiffiffiffiffiffiffi
gp=r

p
¼ a represent the local speed of sound. Let also denote by ynþ1=2

j�1=2 and

p
nþ1=2
j�1=2 the flow inclination angle and the pressure at the interface between the two cells, which will result after the

generated shock wave and expansion fan. The pressure ratio corresponding to the shock wave is denoted here by

pS ¼ p
nþ1=2
j�1=2 =pn

j�1; and that corresponding to the expansion fan by pE ¼ p
nþ1=2
j�1=2 =pn

j ¼ pSpn
j�1=pn

j :

The inclination angle calculated at the cell interface after the oblique shock wave is

ynþ1=2
j�1=2 ¼ yn

j�1 � tan�1
pS � 1

gðMn
j�1Þ

2 � pS þ 1

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðMn

j�1Þ
2

ðgþ 1ÞpS þ g� 1
� 1

s 3
5 ð11Þ

and the same inclination angle calculated after the expansion fan is

ynþ1=2
j�1=2 ¼ yn

j þ nðMnþ1=2
j�1=2 Þ � nðMn

j Þ; ð12Þ

where the Prandtl–Meyer expansion function, nðMÞ; and the Mach number at the interface after the expansion fan,

M
nþ1=2
j�1=2 ; are defined as

nðMÞ ¼ ð1=gÞ tan�1 g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 1

p� 

� tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 1

p
; ð13aÞ

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg� 1Þ=ðgþ 1Þ

p
; ð13bÞ

M
nþ1=2
j�1=2 ¼ ½2=ðg� 1Þ þ ðMn

j Þ
2�=ðpSpn

j�1=pn
j Þ
1�1=g � 2=ðg� 1Þ

n o1=2
: ð14Þ

Since the flow inclination angle ynþ1=2
j�1=2 and pressure p

nþ1=2
j�1=2 at the interface should be the same after both the shock wave

and the expansion fan, they can be determined by solving the system of equations (11) and (12). A fast-converging

iterative scheme is used in this respect, which starts from an assumed value for pS :

3.2. Boundary conditions on specified solid walls

Obviously, the above procedure for the flux calculation can be used only for a regular cell situated inside the

computational domain. For a cell interface situated along a specified solid wall, the flow inclination angle is known,

being equal to the slope angle of the solid wall, such as ynþ1=2
j�1=2 ¼ ynþ1=2

wall (where j can be, for example, j ¼ 1 or j ¼

Fig. 1. Representation of the interface x ¼ xj�1=2 between two cells with an illustration of the Riemann problem solution using a

Godunov-type scheme.
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Nj þ 1 if the wall is situated along the first or the last streamline of the fluid domain). Thus, only one of the Eqs. (11) or

(12) has to be used (depending on the specific situation) to determine the pressure at the corresponding interface.

The treatment of the geometrically unspecified boundaries is discussed in Section 5 for various specific flow problems.

3.3. Determination of primitive flow variables at the step lnþ1

The flux vector calculation requires the values of the pressure and flow direction to be known, and hence the primitive

variables have to be calculated after each integration step in l: Thus, after solving Eq. (10), the components ei; for
iA 1; 2;y; 6f g; of the vector Enþ1

j are calculated at the step lnþ1; and the corresponding primitive variables can be

determined from the following relations:

p ¼ e4U� e3V½ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe4U� e3VÞ2 þ 2ðg� 1Þ2ð2K2H � e23 � e24Þ

q �
1

gþ 1

1

U2 þV2
; ð15Þ

u ¼ ðe3 � pVÞ=K ; v ¼ ðe4 þ pUÞ=K ; r ¼ K=ðuV� vUÞ: ð16Þ

y ¼ tan�1ðv=uÞ; M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2 þ v2Þ=ðgp=rÞ

q
; ð17Þ

where K ¼ e1; H ¼ e2; U ¼ e5; V ¼ e6: The physical coordinates, xn
j and yn

j ; for each streamline x ¼ xj can be

calculated at each step l ¼ ln by integrating Eqs. (7) for x ¼ constant (or dx ¼ 0).

3.4. Computational domain discretization. Stability condition

The computational domain is discretized as mentioned into N 
 Nj rectangular cells by a number of streamlines,

x ¼ xj�1=2 (where j varies from 1 to Nj þ 1), and by N þ 1 interface lines l ¼ ln (where n varies from 1 to N þ 1). The

cell size is defined by Dxj ¼ xjþ1=2 � xj�1=2 and Dln ¼ lnþ1 � ln:
The steps Dxj ; which represent the mass flow rate between the two streamline interfaces, are determined from the fluid

flow parameters at the inlet. For a uniform flow at the inlet defined by the velocity UN inclined at an angle a with

respect to x-axis, the density r
N
; and static pressure pN; the physical distance between the streamlines is assumed

uniform, Dh ¼ Dy=cos a ¼ Dx=sin a; and hence the size of Dxj increments are uniform

Dxj ¼ Dx ¼ r
N

UNDy=cos a ¼ r
N

UNDx=sin a: ð18Þ

The initial flow parameters at l ¼ l1 ¼ 0 needed to start the integration process can thus be obtained as

uN ¼ UN cos a; vN ¼ UN sin a; ð19Þ

UN ¼ @x=@x
��
l¼0¼ sin a=ðr

N
UNÞ; ð20aÞ

VN ¼ @y=@x
��
l¼0¼ cos a=ðr

N
UNÞ; ð20bÞ

KN ¼ r
N
ðuNVN � vNUNÞ; ð21aÞ

HN ¼ U2
N
=2þ ðpN=r

N
Þ=ð1� 1=gÞ; ð21bÞ

e3N ¼ KNuN þ pNVN; ð22aÞ

e4N ¼ KNvN � pNUN: ð22bÞ

The integration step Dln has to satisfy the stability condition, which can be expressed as

Dln ¼ CFL Dxj=½2rjuj tanðyj þ mjÞ�; ð23Þ

where yj is the flow direction angle, mj ¼ sin�1ð1=MjÞ is the Mach angle, and CFL represents the Courant–Friedrich–

Levy number, which should be taken smaller than 1 in this case. The derivation of this stability condition is based on

the theory of characteristics.

3.5. Improved shock resolution procedure

When the slope of the body surface has a sudden compression-type change, a stronger shock wave can be generated

at that location. In this case, an arbitrary value of the integration step, Dln (chosen to satisfy the stability condition),
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usually leads to significant numerical errors and to the inability of capturing sharp shocks without numerical

distortions, as shown in Section 4.1 (Fig. 4). This type of loss of accuracy has also been observed by Loh and Hui (1993)

who used a local analytical solution at the location of the slope change, similar to that used by Glatz and Wardlaw

(1984) for a Godunov scheme.

In the following, we will use a different procedure by conveniently adjusting the Lagrangian-distance increment Dln:
First, the integration step Dln�1 is adjusted such that the Lagrangian-distance line l ¼ ln coincides with the location of

the wall slope change. However, this is not enough to solve this difficulty. As shown in Fig. 2a in a physical plane

representation, the cell interface along the line l ¼ lnþ1 is normally divided by the shock wave into two parts, one part

situated in the uniform flow field upstream of the shock and the other in the flow field downstream of it. This state

discontinuity along this interface was found to be at the root of the numerical errors. By adjusting the size of the

integration step Dln to avoid this discontinuity, as shown in Fig. 2b, the solution accuracy is substantially improved.

This step adjustment is calculated using the equation Dl ¼ DxJ sin b=sinðs� bÞ; where J is the Jacobian of the

coordinate transformation, s ¼ ðU cos yþV sin yÞ=ðU sin y�V cos yÞ and b represents the oblique shock angle,

which can be determined in the process of flux calculation discussed in Section 3.1. It is worth noting that this adjusted

step Dln may not always be consistent with the CFL stability condition (23), but this has no negative effects on the

numerical stability, as long as the stability condition is again satisfied after the jump Dln: A representation in the

physical plane of the resulting adjusted grid is shown in Fig. 2c.

As shown in Sections 4.1 and 4.3, this improved numerical procedure has led to an excellent accuracy of the

numerical solution, in which the numerical representation of the shock waves is very accurate and sharp.

4. Solutions of flow problems with specified solid boundaries

Before using it for the analysis of flow problems with geometrically unspecified boundaries, this Lagrangian method

has been first applied for validation to the study of several flow problems with specified solid boundaries.

Fig. 2. Illustration of the numerical procedure to improve the shock resolution.
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4.1. Flow in a duct with multiple shock reflections. method validation

The supersonic flow in a duct with a lower wall suddenly deflected by an angle d is shown schematically in Fig. 3a.

The oblique shock wave on the lower wall is successively reflected on the upper and the lower walls. Numerical

computations have been performed for this problem considering an inlet duct height hin ¼ 1; an inlet Mach number

Min ¼ 2 and a wall deflection angle d ¼ 7�: A number of 61 streamlines have been considered across the duct height.

The numerical solutions obtained with the present Lagrangian method using the improved shock resolution

procedure (discussed in Section 3.5), and without it (see Mateescu and Nasrallah, 1995) are compared in Fig. 4 with the

exact analytical solutions for the 1st and the 21st streamlines in the region of the wall deflection location (upstream and

downstream of the first shock). It was found that the present Lagrangian method with the improved shock resolution

procedure displays a very good resolution of the shock waves, with sharp discontinuities and highly accurate results.

This can also be seen in Table 1 for the first two reflected shocks in terms of the corresponding Mach numbers and

shock locations. The agreement shown in this table between the present solution and the exact analytical solution is

remarkable.

The complete Mach number and pressure distributions obtained with the present Lagrangian method are shown in

Fig. 5, for the closest streamlines to the lower and upper walls (streamlines 1 and 61, respectively) and for five

intermediate streamlines (streamlines 11, 21, 31, 41 and 51). The streamline pattern of this flow is shown in Fig. 3b, in

which the shock waves are clearly indicated by the changes of the streamline slopes (the scale of y-axis is enlarged with

respect to that of x-axis).

Fig. 3. (a) Geometry of the supersonic flow in a duct with multiple shock reflections. (b) Streamline pattern of this flow.

Table 1

Comparison between the present solution and the exact analytical results for a duct flow with multiple shock reflections

Initial shock First reflected shock (A) Second reflected shock (B)

M1—Mach number M2—Mach number xA—Shock location M3—Mach number xB—Shock location

Present solution 1.7498 1.5088 1.3977 1.2589 2.4091

Exact analytical solution 1.7498 1.5088 1.3976 1.2588 2.4093
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4.2. Flow in a duct with a shock and an expansion on the lower wall

Computations have also been performed for the supersonic flow in a duct with a straight wedge of length l ¼ hin ¼ 1;
shown schematically in Fig. 6a. The geometry of the first part of the duct was the same as in Section 4.1, with d ¼ 7�

and Min ¼ 2; but at the end of the wedge the lower wall becomes again parallel to the upper wall through a deflection

Fig. 5. Supersonic flow in a duct with multiple shock reflections. Mach number and pressure distributions along seven streamlines:

———, 1st streamline (closest to the lower wall); — - - —, 11th streamline; ���, 21st streamline; — - —, 31st streamline; - - - -, 41st

streamline; � - � - �, 51st streamline; — —, 61st streamline (closest to the upper wall).

Fig. 4. Variation of the Mach number along the 1st and 21st streamlines in the region of the wall deflection location (x ¼ 0).

Comparison between: ——, present Lagrangian solution with improved shock resolution procedure; - - -, Lagrangian solution without

improved shock resolution procedure; ��� , exact analytical results.
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with the same angle, d ¼ 7�; but in the opposite sense. This test was done to validate this method for the Prandtl–Meyer

expansion fan generated at the downstream corner of the wedge. The present solution was found in good agreement

with the exact analytical results obtained for the Prandtl–Meyer expansion, without any special numerical treatment of

the expansion fan.

The streamline pattern of this flow is shown in Fig. 6b, and the Mach number and pressure distributions for seven

streamlines are shown in Fig. 7.

4.3. Flow in a circular-arc nozzle: method validation

This flow problem in a duct with a circular-arc bump of length lB ¼ hin ¼ 1 and height hB ¼ 0:04hin; shown
schematically in Fig. 8a, has been previously studied, among others, by Eidelman et al. (1984), Ni (1982) and Mateescu

and Stanescu (1995) using different numerical methods based on Eulerian formulations. The present solution for the

Mach number distribution, obtained for Min ¼ 1:65 using 81 streamlines, is compared in Fig. 9a, for validation, with

the results obtained by Eidelman et al. (1984) for the closest streamlines to the lower and upper walls (1st and 81st

streamlines, respectively). Good agreement was found between these solutions, with the observation that the shock

wave resolution is slightly sharper in the present solution. The Mach number distribution along three other intermediate

streamlines (21st, 41st and 61st) is also shown in Fig. 9 (comparison not available). The pressure distributions along

these five streamlines are also shown in Fig. 9. The pressure distribution calculated on the circular-arc bump will be

used as an input in Section 5.2 for the indirect flow problems with specified pressure distribution. The streamline pattern

of this flow is shown in Fig. 8b (again the scale of y-axis is enlarged with respect to that of x-axis).

It is worth noting that the same flow problem has also been solved (again for validation purpose) on the same type of

PC, by a biased-flux method based on a finite volume formulation developed by Mateescu and Stanescu (1995), which

uses an Eulerian representation of the flow. The computing time required by the present Lagrangian method was almost

one order of magnitude smaller than that method based on the Eulerian flow representation for the same accuracy,

although that particular method was itself characterized by a high computational efficiency in comparison with other

Fig. 6. (a) Geometry of the supersonic flow in a duct with a shock and an expansion fan at the lower wall. (b) Streamline pattern of this

flow.
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Eulerian methods (such as Jameson’s method as mentioned in that paper). This shows the advantages of the present

Lagrangian method for the flow problems which can be treated in this manner.

4.4. Flow in a supersonic parabolic nozzle

The geometry of this nozzle consists in two parabolas smoothly connected at the midpoint of the nozzle length, as

shown in Fig. 10a. Due to the nozzle symmetry, only the lower half of the nozzle will be considered in the computations,

the axis of symmetry acting as a solid boundary.

Computations have been performed for the inlet and outlet cross-sectional heights hin ¼ 1 and hout ¼ 4 (hence area

ratio hout=hin ¼ 4), the nozzle length lnoz ¼ 20 and the inlet Mach number Min ¼ 1:05: A number of 15 streamlines has

been used in this case.

The expansion waves generated in the expansion portion of the nozzle are subjected to successive multiple reflections

on the upper and lower walls, which generate oscillations of the flow variables along the nozzle, including oscillations of

the flow direction and Mach number. As a result, the flow parameters in a cross-section are strongly nonuniform. In

order to study the axial evolution of these oscillations, the computational domain was extended with a uniform cross-

section of an additional length of 100 times the inlet height, or five times the nozzle length (that is lcomp ¼ 120).

The results obtained for this nozzle flow will be compared with those obtained in the nozzle design problem studied in

Section 5.2, which aims to obtain a uniform flow at the nozzle exit.

The Mach number and pressure distributions along five streamlines (1st, 5th, 8th, 11th and 15th) are shown in

Fig. 11. One can notice that the Mach number has a very large cross-sectional variation at the nozzle exit, and its

oscillations continue to exist at long distances from the nozzle exit in spite of a very smooth variation of the nozzle

Fig. 7. Supersonic flow in a duct with a shock and an expansion fan at the lower wall. Mach number and pressure distributions along

seven streamlines: ———, 1st streamline (closest to the lower wall); — - - —, 11th streamline; � � �, 21st streamline; — - —, 31st

streamline; - - - -, 41st streamline; � - � - �, 51st streamline; — —, 61st streamline (closest to the upper wall).
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geometry and its very long extension of constant cross-section. As shown in Fig. 11, these oscillations are not

completely damped even after a distance of 5 times the nozzle length.

The streamline pattern, indicating the oscillations in the flow direction, is shown in Fig. 10b (please note that the y-

axis is very much enlarged in this figure in comparison with the x-axis).

4.5. Flow past a lenticular airfoil at incidence

This symmetric airfoil of chord c, with the upper and lower surfaces represented by two circular arcs, is placed at an

incidence a in a uniform flow of Mach number MN: Computations have been performed with this Lagrangian method

for an airfoil maximum thickness th ¼ 0:04c; with a ¼ 7� and MN ¼ 2; considering 120 streamlines (60 on each side of
the airfoil). The Mach number and pressure distribution on the closest streamlines to the upper and lower surfaces are

shown in Fig. 12. The streamline pattern of the flow past this airfoil is shown in Fig. 13.

The pressure distribution calculated on this airfoil will be used as an input in Section 5.1 for the indirect flow

problems with specified pressure distribution.

5. Solutions of flow problems with geometrically unspecified boundaries

The flow problems of unspecified geometry require a special treatment of the geometrically unspecified boundaries.

This will be illustrated in the following for several types of specific flow problems.

5.1. Indirect flow problems with specified pressure distribution: method validation

In the case of indirect flow problems in which the solid boundary (or a portion of it) is defined by a specified pressure

distribution, this Lagrangian method can be directly used without many modifications. Thus, for these problems, the

specified pressure on the wall is imposed at the boundary in the process of flux calculation, that is p
nþ1=2
j�1=2 ¼ p

nþ1=2
spec ;

instead of imposing the flow inclination angle ynþ1=2
j�1=2 at the solid wall. Then ynþ1=2

j�1=2 is determined in the process of flux

calculation (based on the Riemann problem solution) indicated in Section 3.2, and the final flow variables, including the

Fig. 8. (a) Geometry of the circular-arc nozzle. (b) Streamline pattern of this flow.
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flow inclination angle at the wall ynþ1
j at the next Lagrangian-distance line l ¼ lnþ1 (and hence the wall geometry), are

calculated from Eq. (10) as indicated in Section 3.

5.1.1. Indirect problem of a nozzle with specified wall pressure distribution

The pressure distribution determined in Section 4.3 on the circular-arc bump is now considered as being specified (as

input) on the portion 0oxolB of the duct wall, where lB ¼ hin ¼ 1 (obviously, the wall geometry is not specified on this

portion). The geometrical shape of the duct wall with specified pressure distribution is obtained by solving this indirect

flow problem as indicated in Section 5.1. The resulting geometrical shape of the duct wall is compared for validation in

Fig. 14a with the original circular-arc shape, initially used in Section 4.3 to determine the pressure distribution used here

as input. A numerical comparison of the y-coordinates computed in the indirect flow problem and those of the original

wall considered in the direct problem (as input) is shown in Table 2 for the points indicated in Fig. 14a. One can notice a

very good agreement between these coordinates, which indicate an excellent accuracy of the solution of the indirect flow

problem with specified pressure distribution.

5.1.2. Indirect problem of an airfoil with specified pressure distribution

Similarly, the pressure distribution determined in Section 4.5 on the lenticular airfoil is now considered as being

specified (as input). The resulting geometrical shape of the airfoil is compared for validation in Fig. 14b with the

original geometry of the airfoil initially used in Section 4.5 to determine the pressure distribution used here as input. A

numerical comparison of the y-coordinates computed in the indirect flow problem and those of the original lenticular

airfoil considered in the direct problem is shown in Table 2 for the points indicated in Fig. 14b, which indicate an

excellent accuracy of the solution of the indirect flow problem with specified pressure distribution.

Fig. 9. Supersonic flow in a circular-arc nozzle. Present Lagrangian solution for the Mach number and pressure distributions along five

streamlines: ———, 1st streamline (closest to the lower wall); — - - —, 21st streamline;� � �, 41st streamline; — - —, 61st streamline;

— —, 81st streamline (closest to the upper wall). Comparison with the numerical results obtained by Eidelman et al. for the Mach

number distribution on the lower wall (2) and on the upper wall (J).
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5.2. Nozzle design problem

This enhanced Lagrangian formulation has proven suitable and very efficient in solving the design flow problems,

such as that of the design of the geometrical shape of a supersonic nozzle to obtain a uniform flow of a specified Mach

number at the exit, Mout:
As shown in Section 4.4, the expansion waves generated in the expansion portion of the nozzle are subjected to

successive multiple reflections on the lower and upper walls, which generate strong oscillations of the flow variables

along the nozzle and in its extension. Figs. 10b and 11 show these oscillations for the flow inclination angle, Mach

number and pressure, which continue long after the nozzle outlet (lnoz ¼ 20hin) in its extension with a length of 100

times the inlet height.

In order to obtain a uniform flow at the nozzle exit, the successive expansion wave reflections have to be eliminated

by using a reflection-suppression boundary condition at the nozzle wall. This is achieved by imposing the wall slope to

follow the shape of the closest streamline to the wall, that is ynþ1
wall ¼ ynþ1

j ; where j ¼ 1 was taken as the closest streamline

to the lower wall in the present computations.

The solution of the nozzle design problem is illustrated here for the case studied by Anderson (1991), aiming to obtain

a uniform flow at the nozzle outlet of Mach number Mout ¼ 2:4: Computations have been performed for the lower half
of the nozzle (due to the nozzle symmetry), with the inlet Mach number Min ¼ 1:001; inlet height hin ¼ 1 and a number

of 211 streamlines. A very short circular arc has been considered in this case at the inlet in order to avoid the flow

separation that may be caused by a very sharp corner expansion and the wall slope at the end of this circular arc was

calculated as ywm ¼ ½nðMinÞ � nðMoutÞ�=2:
The designed geometrical shape of the nozzle and the streamline pattern of the flow are shown in Fig. 15, together

with the variation of the Mach number along five streamlines (1st, 61st, 106th, 166th, 211th). One can notice a very

smooth variation of the flow inclination angle along the streamlines, and a very efficient stabilization of the Mach

number variation along the nozzle (by contrast to the situation shown in Figs. 10b and 11 in the case of the parabolic

nozzle). The outlet to inlet area ratio was found to be hnoz=hin ¼ 2:3958; which is in good agreement with the value of

2.403 obtained by Anderson (1991) using the method of characteristics (the slight difference can be attributed to the

slight difference in the inlet conditions).

Fig. 10. (a) Geometry of the parabolic supersonic nozzle. (b) Streamline pattern of this flow.

D. Mateescu / Journal of Fluids and Structures 17 (2003) 603–626616



5.3. Analysis of flexible-membrane airfoils

Another types of flow problems with geometrically unspecified boundaries are those resulting from the consideration

of the structural deformations of the aerodynamic surfaces (static aeroelasticity problems) or the adaptive structures.

The present enhanced Lagrangian method has proven to be very efficient also for solving this type of problems. This is

illustrated here for flexible-membrane airfoils in supersonic flow, in which case the geometrical shape of the membrane

depends on the pressure difference across it (see Mateescu and Newman, 1991, for the subsonic case). In order to

validate the Lagrangian solution, an analytical solution is derived first for this problem.

5.3.1. Analytical solution

Consider a flexible-membrane airfoil of chord c with the leading and trailing edges situated on the x-axis of a

Cartesian coordinate system, and denote by a its incidence with respect to the velocity UN of a uniform stream in which

it is placed. The pressure difference coefficient across this thin airfoil can be obtained, using the method indicated in

Carafoli et al. (1969) and Mateescu (1987), in the form

DCp ¼ 4=B
� �

sin a� cos a tan yð Þ; B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N
� 1

q
; ð24Þ

Fig. 11. Supersonic flow in a parabolic nozzle. Mach number and pressure distributions along five streamlines: ———, 1st streamline

(closest to the lower wall); — - - —, 5th streamline;�� �, 8th streamline; — - —, 12th streamline; ——, 15th streamline (closest to the

upper wall).
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Fig. 12. Lenticular airfoil. Mach number and pressure distributions along two streamlines: ———, closest streamline to the lower wall;

� � �, closest streamline to the upper wall.

Fig. 13. Lenticular airfoil. Streamline pattern of the flow.
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where MN is the Mach number of the uniform stream and y denotes here the local slope angle of the flexible-membrane
airfoil, which is a priori unknown. This slope angle is in fact related to the pressure difference and the tension in the

membrane by the equilibrium equation normal to the membrane, as shown in Mateescu and Newman (1991). This

equation can be expressed as

DCp ¼ �cCT dðtan yÞ=dx
� �

; CT ¼ 2T=ðgM2
N

pNcÞ; ð25Þ

where CT is the nondimensional tension coefficient, which leads to the linear differential equation

dy
y� a

¼
1

cCT

4

B
dx: ð26Þ

After integration one obtains

y� a ¼ ðy0 � aÞ expðAx=cÞ; A ¼ 4=ðBCT Þ: ð27Þ

Fig. 14. Indirect flow problem. (a) Indirect nozzle problem and (b) indirect airfoil problem. Comparison between: Computed wall

geometry for a specified pressure distribution (—J—); Original geometry used to calculate the pressure distribution serving as input in

the indirect problem (—&—).

Table 2

Computed geometry of the indirect flow problems with specified pressure distribution. Method validation by comparison with the

original geometry used to determine the pressure distribution serving as input in the indirect method

y-Coordinate Indirect nozzle problem with specified pressure distribution Indirect airfoil problem with specified pressure distribution

Computed geometry Original geometry Computed geometry Original geometry

Point A 0.00761 0.00761 �0.0082 �0.0082
Point B 0.02601 0.02602 �0.0429 �0.0430
Point C 0.03825 0.03826 �0.0938 �0.0937
Point D 0.03785 0.03787 �0.0288 �0.0291
Point E 0.02547 0.02549 �0.0833 �0.0835
Point F 0.00656 0.00658 �0.1143 �0.1146
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Since the slope angle y ¼ tan�1½h0ðxÞ� is defined in function of the membrane shape equation y ¼ hðxÞ; one obtains after
another integration the geometrical shape of the membrane in the form

hðxÞ ¼ ax þ c ðy0 � aÞ=A
� �

½expðAx=cÞ � 1�; ð28aÞ

y0 ¼ a½1� A=ðexpA � 1Þ�: ð28bÞ

The excess length e of the membrane with respect to its chord, defined by

e ¼ c=c � 1 ¼ ð1=cÞ
Z c

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h0ðxÞ½ �2

q
dx � 1; ð29Þ

where c is the membrane length, which can be approximately calculated as

e ¼ ða2=4Þ½Aðexpð2AÞ � 1Þ=ðexpA � 1Þ2 � 2�: ð30Þ

5.3.2. Lagrangian method solution

In this case, the implementation of the boundary condition on the membrane should include the equilibrium equation

normal to the membrane, which can be expressed for numerical use as

Dy ¼ 2 sin�1 �
Dp

2T
Dl

� �
; Dl ¼ lnþ1 � ln; ð31Þ

Fig. 15. Nozzle design problem. (a) Designed geometrical shape of the nozzle and the streamline pattern of the flow and (b) Mach

number distribution along five streamlines: ———, 1st streamline (closest to the lower wall); — - - —, 61st streamline; � � �, 106th
streamline; — - —, 166th streamline; — —, 211th streamline (closest to the upper wall).
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where Dp ¼ p
nþ1=2
m � p

nþ1=2
m�1 and Dy ¼ ynþ1

m�1=2 � yn
m�1=2 represent the pressure difference across the membrane and the

change in the membrane slope angle between two consecutive Lagrange-distance lines, respectively, in which subscript m

denotes the closest streamline to the upper side of the membrane. This condition on the flexible membrane has to be

solved together with the flux calculation equations (11) or (12), depending on the situation, at each new Dl step.

Computations have been performed with MN ¼ 2 and c ¼ 1; for two values of the angle of attack and tension

coefficient, a ¼ 7� and 10� and CT ¼ 2 and 4: The results obtained are shown in Fig. 16. The effect of the incidence a
on the Mach number distributions along the closest streamlines to the membrane on both sides is shown in Fig. 16a,

and the effect of the incidence, a; and of the tension coefficient CT on the computed geometrical shape of the membrane

are shown in Figs. 16b and c. One can notice that the required excess length of the membrane, e; increases with a and
decreases with an increase in CT : A typical illustration of the streamline pattern of this flow is shown in Fig. 17a, and a

comparison between the analytical solution and the Lagrangian method results is shown in Fig. 17b. The initial slope

angle of the membrane was the same, y0 ¼ 3:28�; while the chord was slightly different (c ¼ 1 compared to 0:9927 in

the analytical and numerical methods, respectively). The excess length was also comparable, eanalytic ¼ 0:08114 versus

enumeric ¼ 0:08219: Both sets of results were found in reasonable good agreement.

Fig. 16. Flexible-membrane airfoil. (a) Mach number distributions along the closest streamlines to the lower and upper surface for

MN ¼ 2; CT ¼ 2 and for two values of the incidence: ———, a ¼ 7�; — — a ¼ 10�: (b) Geometrical shape of the membrane

for MN ¼ 2; CT ¼ 2 and for two values of the incidence: ———, a ¼ 7�; — — a ¼ 10�: (c) Geometrical shape of the membrane for
MN ¼ 2; a ¼ 7� and for two values of the tension coefficient: ———, CT ¼ 2; — — CT ¼ 4:
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5.4. Analysis of jet-flapped airfoils

The case of a rigid airfoil with a thin jet flap issued at its trailing edge at an angle b with respect to the chord

represents another type of flow problem with geometrically unspecified boundaries. In this case, the geometry of the

airfoil of chord c is specified, but the geometrical shape of the jet sheet situated along the wake depends on the jet

momentum J and on the pressure difference across it (see Mateescu and Newman, 1991, for the subsonic case). In order

to validate the Lagrangian solution, an analytical solution is also derived for this problem.

5.4.1. Analytical solution

For this airfoil flow, we will use the same notations as in Section 5.3. The pressure difference coefficient across the jet

flap is determined by the same Eq. (24), obtained using the analytical method indicated in Carafoli et al. (1969). The a

priori unknown slope angle y of the jet flap is related to the pressure difference and the jet momentum, J; (as shown in

Mateescu and Newman, 1991) by the equation

DCp ¼ cCJ ½dðtanyÞ=dx�; CJ ¼ 2J=ðgM2
N

pNcÞ; ð32Þ

where CJ is the nondimensional jet momentum coefficient. This leads to a linear differential equation similar to

Eq. (26), which can be integrated twice in order to obtain the geometrical shape of the jet flap in the form

y� a ¼ �ðbþ aÞexpð�Aðx=c � 1ÞÞ; A ¼ 4=ðBCJ Þ; ð33Þ

hðxÞ ¼ aðx � cÞ þ c ðbþ aÞ=A
� �

expð�Aðx=c � 1ÞÞ � 1
� �

: ð34Þ

Fig. 17. Flexible-membrane airfoil. (a) Typical streamline pattern of the flow. (b) Geometrical shape of the membrane: comparison

between the present Lagrangian solution (———) and the present analytical solution (— —).
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5.4.2. Lagrangian method solution

In this case, the implementation of the boundary condition on the jet flap should include the equilibrium equation

normal to the membrane, which can be expressed, for numerical use, as

Dy ¼ 2 sin�1 �
Dp

2J
Dl

� �
; Dl ¼ lnþ1 � ln; ð35Þ

where Dp ¼ p
nþ1=2
m � p

nþ1=2
m�1 and Dy ¼ ynþ1

m�1=2 � yn
m�1=2 represent the pressure difference across the jet flap and,

respectively, the change in its slope angle between two consecutive Lagrange-distance lines (subscript m denotes the

closest streamline to the upper side of the jet flap). This condition on the jet flap has to be solved together with the flux

calculation equations (11) or (12) at each new Dl step.

Fig. 18. Jet-flapped airfoil. (a) Mach number distributions along the closest streamlines to the lower and upper surface of the jet flap

for MN ¼ 2; a ¼ 7�; CJ ¼ 0:6 and for two values of the deflection angle of the jet flap: ——, b ¼ 5�;———, b ¼ 10�: (b) Geometrical
shape of the jet flap for MN ¼ 2; a ¼ 7�; CJ ¼ 0:6 and for two values of the deflection angle of the jet flap: — —, b ¼ 5�; ———,

b ¼ 10�: (c) Geometrical shape of the jet flap for MN ¼ 2; a ¼ 7�; b ¼ 10� and for two values of the jet-momentum coefficient: — —,

CJ ¼ 0:2; ———, CJ ¼ 0:6:
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Computations have been performed with MN ¼ 2 and a ¼ 7�; considering a rigid lenticular airfoil (studied in Section
4.5) with a jet flap at a deflection angle b: The results obtained are shown in Fig. 17 for two values of the jet deflection

angle, b ¼ 5� and 10�; and for two values of the jet momentum coefficient, CJ ¼ 0:2 and 0:4: The Mach number

distributions along the closest streamlines to the jet flap on both sides are shown in Fig. 18a for two values of the jet

deflection angle, b: The effects of the jet deflection angle b and of the jet momentum coefficient CJ on the geometrical

shape of the jet flap are shown in Figs. 18b and c. A typical illustration of the streamline pattern of this flow is shown in

Fig. 19a, and a comparison between the analytical solution and the Lagrangian method results is shown in Fig. 19b. A

reasonable good agreement was found between these two sets of results.

6. Conclusions

An enhanced Lagrangian method has been used in this paper to solve several aerodynamic problems with

geometrically unspecified geometry. This method uses the stream function and Lagrangian-distance (along the

streamlines) coordinates. Two compatibility equations related to the coordinate transformation have to be

simultaneously solved with the Euler equations of motion in conservation form expressed in these generalized

Lagrangian coordinates; however, the continuity and energy equations reduce to constant values along the streamlines

in these coordinates. The augmented system of equations is solved by integration in Lagrangian-distance (along

Fig. 19. Jet-flapped airfoil. (a) Typical streamline pattern of the flow. (b) Geometrical shape of the jet flap: comparison between the

present Lagrangian solution (———) and the present analytical solution (— —).
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streamlines) using a finite volume method, in which the flux values are determined in supersonic flows based on the

Riemann problem solution with a Godunov-type scheme. Special procedures have been developed in this enhanced

method for a substantially improved and sharp numerical resolution of the shock waves, and for the numerical

implementation of the aerodynamic conditions defining the geometrically unspecified solid or fluid boundaries.

This method has first been successfully validated for aerodynamic problems with solid boundaries of specified

geometry by comparison with exact analytical solutions and with previous computational results obtained by numerical

methods using Eulerian formulations.

Then this enhanced Lagrangian method has been used to determine the solution of several flow problems with

geometrically unspecified boundaries: (1) Determination of the geometrical shape of an airfoil, or of a portion of a

nozzle wall, corresponding to a specified pressure distribution (indirect flow problems). (2) Supersonic nozzle design

problem based on the reflection-suppression condition for obtaining a specified uniform flow at the nozzle outlet (design

flow problem). (3) Analysis of supersonic flows past flexible-membrane airfoils (an adaptive-structure flow problem). (4)

Analysis of supersonic flows past jet-flapped airfoils (an adaptive fluid boundary problem with slip lines).

In all cases, this enhanced Lagrangian method displayed an excellent computational efficiency and led to accurate

solutions with a sharp numerical resolution of the shock waves and a rigorous treatment of the expansion fans. This

method displayed an excellent capability of solving very efficiently the flow problems with geometrically unspecified

solid or fluid boundaries.
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